~	•	
$\langle \cap \rangle$	ri	\mathbf{r}
Se	110	23.

Code No. H1M901

Roll No.

Candidates must write the Code No on the title page of the answer-book

- 1. Please check that this question paper contains 6 printed pages
- 2. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- 3. Please check that this question paper contains 30 questions.
- 4. Please write down the Serial Number of the question before attempting it.
- 5. 15 minute time has been allotted to read this question paper. During these time students are not allowed to write answers

General Instruction:

- 1. All questions are compulsory.
- 2. This question paper contains 30 questions divided into four Sections A, B, C and D.
- Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided.
- 5. Use of Calculators is not permitted

MATHEMATICS

Maximum Marks: 80 Time allowed: 3 hours

SECTION A

Question numbers 1 to 6 carry 1 mark each

1. Simplify $\left(\sqrt{4}\right)^{-3}$.

STD - IX

- 2. If a + b = 7 and ab = 12, find the value of $(a^2 ab + b^2)$.
- Which of the following points lie on x-axis? Which on y- axis ?
 A(0, 2), B(5, 6), C(-3, 0), D(0, -3), E(0, 4), F(6, 0), G(3, 0)
- 4. In $\triangle ABC$, $\angle B = 45^\circ$, $\angle C = 55^\circ$ and bisector of $\angle A$ meets BC at a point D. Find $\angle ADB$ and $\angle ADC$.

5. In the figure $\angle AOB = 90^{\circ}$, AC = BC, OA = 12cm and OC = 6.5cm. Find the area of $\triangle AOB$.

6. In a $\triangle ABC$, $\angle A = 50^\circ$, $\angle B = 60^\circ$ and $\angle C = 70^\circ$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

SECTION B

Question numbers 7 to 12 carry 2 marks each

- 7. If x = 1, y = 2 is a solution of the equation $a^2x + ay = 3$, then find the values of a.
- 8. Simplify $(2\sqrt{5} + 3\sqrt{2})^2$.
- 9. If the polynomials $ax^3 + 4x^2 + 3x 4$ and $x^3 4x + a$ leave the same remainder when divided by (x 3), find the value of a.
- 10. If $\sqrt{2} = 1.414$, find the value of $\sqrt{3} \div \sqrt{6}$ upto three places of decimals.
- 11. What are the co-ordinates of a point that is :
 (i) the mirror image of point (0, 4) in x- axis.
 (ii) mirror image of point (-3, -5) in y- axis.
- 12. The sides AB and CD of a parallelogram ABCD are bisected at E and F. Prove that EBFD is a parallelogram.

SECTION C

Question numbers 13 to 22 carry 3 marks each

- 13. Represent $\sqrt{7.4}$ on the number line.
- 14. If $f(x) = x^4 2x^3 + 3x^2 ax + b$ is a polynomial such that when it is divided by x 1 and x + 1, the remainders are 5 and 19 respectively. Determine the remainder when f(x) is divided by x 2.

OR

Use factor theorem to verify that x + a is a factor of $x^n + a^n$ for any odd positive integer.

15. If
$$x = 3 - 2\sqrt{2}$$
, find $x^2 + \frac{1}{x^2}$.

OR

If $x = \frac{1}{2-\sqrt{3}}$, find the value of $x^3 - 2x^2 - 7x + 5$.

16. If $x = \frac{4}{3}$ is a root of the polynomial $f(x) = 6x^3 - 11x^2 + kx - 20$, find the value of k.

17. In the figure AB $\|$ CD . Find the value of x.

In the figure AB $\|CD \text{ and } P \text{ is any point shown in the figure . Prove that } \angle ABP + \angle BPD + \angle CDP = 360^{\circ}$

18. In the figure , it is given that RT = TS and $\angle 1 = 2\angle 2$ and $\angle 4 = 2\angle 3$. Prove that $\triangle RBT \cong \triangle SAT$.

- 19. ABCD is a rhombus, EABF is a straight line such that EA = AB = BF. Prove that ED and FC when produced meet at right angle.
- 20. Let ABC be an isosceles triangle in which AB = AC. If D, E, F be the mid-points of the sides BC, CA and AB respectively, show that the segment AD and EF bisect each other at right angles.
- 21. If AD is a median of a triangle ABC, then prove that triangles ADB and ADC are equal in area. If G is the mid-point of median AD, prove that $ar(\Delta BGC) = 2 ar(\Delta AGC)$.
- 22. In the figure, ABCD and AEFD are two parallelograms. Prove that

(i) PE = FQ

(ii) ar($\triangle APE$) : ar($\triangle PFA$) = ar($\triangle QFD$) : ar($\triangle PFD$)

(iii) $ar(\Delta PEA) = ar(\Delta QFD)$

OR

ABC is a triangle in which D is the mid-point of BC and E is the mid-point of AD.

Prove that area of $\triangle BED = \frac{1}{4}$ area of $\triangle ABC$.

SECTION D

Question numbers 23 to 30 carry 4 marks each

23. If both a and b are rational numbers, find the values of a and b

$$\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a + b\sqrt{3}$$

OR

Show that $\frac{1}{3-\sqrt{8}} - \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} - \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2} = 5$

- 24. Find the values of a and b so that the polynomial $x^3 + 10x^2 + ax + b$ is exactly divisible by x 1 as well as x 2.
- 25. In the figure PQRS is a quadrilateral and T and U are respectively points on PS and RS such that PQ = RQ, $\angle PQT = \angle RQU$ and $\angle TQS = \angle UQS$. Prove that QT = QU.

26. In the figure AB $\|$ CD and EF $\|$ DQ. Determine \angle PDQ, \angle AED and \angle DEF.

27. In the figure, ABCD is a trapezium in which $AB \parallel DC$ and DC = 40 cm and AB = 60 cm. If X and Y are respectively the mid-points of AD and BC, prove that

(i) XY = 50cm

(ii) DCYX is a trapezium

(iii) ar(trap. DCYX) =
$$\frac{9}{11}$$
ar(trap.XYBA)

28. (i) In the figure, it is given that $\angle 1 = \angle 4$ and $\angle 3 = \angle$.By which Euclid's axiom, it can be shown that if $\angle 2 = \angle 4$ then $\angle 1 = \angle 3$.

- (ii) Write Euclid's any three postulates.
- 29. In the figure , AB = AC, D is the point in the interior of $\triangle ABC$ such that $\angle DBC = \angle DCB$. Prove that AD bisects $\angle BAC$ of $\triangle ABC$.

In Δ 's ABC and PQR, AB = PQ, AC = PR and altitude AM and altitude PN are equal. Show that \triangle ABC $\cong \triangle$ PQR.

30. ABCD is a trapezium in which AB \parallel CD and AD = BC. Show that

(i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD.$

OR

In \triangle ABC, AD is the median through A and E is the mid-point of AD. BE is produced to meet AC in F. Prove that AF = $\frac{1}{3}$ AC.
