Series:

Roll No.

Code No. H1M901

Candidates must write the Code No on the title page of the answer-book

1. Please check that this question paper contains 6 printed pages
2. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
3. Please check that this question paper contains 30 questions.
4. Please write down the Serial Number of the question before attempting it.
5. 15 minute time has been allotted to read this question paper. During these time students are not allowed to write answers

General Instruction:

1. All questions are compulsory.
2. This question paper contains 30 questions divided into four Sections A, B, C and D.
3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 8 questions of 4 marks each.
4. There is no overall choice. However, an internal choice has been provided.
5. Use of Calculators is not permitted

MATHEMATICS

STD - IX

SECTION A

Question numbers 1 to 6 carry 1 mark each

1. $\operatorname{Simplify}(\sqrt{4})^{-3}$.
2. If $\mathrm{a}+\mathrm{b}=7$ and $\mathrm{ab}=12$, find the value of $\left(a^{2}-a b+b^{2}\right)$.
3. Which of the following points lie on x -axis? Which on y - axis ?
$\mathrm{A}(0,2), \mathrm{B}(5,6), \mathrm{C}(-3,0), \mathrm{D}(0,-3), \mathrm{E}(0,4), \mathrm{F}(6,0), \mathrm{G}(3,0)$
4. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=55^{\circ}$ and bisector of $\angle \mathrm{A}$ meets BC at a point D . Find $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$.
5. In the figure $\angle \mathrm{AOB}=90^{\circ}, \mathrm{AC}=\mathrm{BC}, \mathrm{OA}=12 \mathrm{~cm}$ and $\mathrm{OC}=6.5 \mathrm{~cm}$. Find the area of $\triangle \mathrm{AOB}$.

6. In a $\triangle A B C, \angle A=50^{\circ}, \angle B=60^{\circ}$ and $\angle C=70^{\circ}$. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

SECTION B

Question numbers 7 to 12 carry 2 marks each

7. If $x=1, y=2$ is a solution of the equation $a^{2} x+a y=3$, then find the values of a.
8. \quad Simplify $(2 \sqrt{5}+3 \sqrt{2})^{2}$.
9. If the polynomials $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+a$ leave the same remainder when divided by $(x-3)$, find the value of a.
10. If $\sqrt{2}=1.414$, find the value of $\sqrt{3} \div \sqrt{6}$ upto three places of decimals.
11. What are the co-ordinates of a point that is:
(i) the mirror image of point $(0,4)$ in x - axis.
(ii) mirror image of point $(-3,-5)$ in y - axis.
12. The sides AB and CD of a parallelogram ABCD are bisected at E and F . Prove that EBFD is a parallelogram.

SECTION C

Question numbers 13 to 22 carry 3 marks each

13. Represent $\sqrt{7.4}$ on the number line.
14. If $\mathrm{f}(\mathrm{x})=x^{4}-2 x^{3}+3 x^{2}-a x+b$ is a polynomial such that when it is divided by $x-1$ and $x+1$, the remainders are 5 and 19 respectively. Determine the remainder when $\mathrm{f}(\mathrm{x})$ is divided by $x-2$.

OR

Use factor theorem to verify that $x+a$ is a factor of $x^{n}+a^{n}$ for any odd positive integer.
15. If $x=3-2 \sqrt{2}$, find $x^{2}+\frac{1}{x^{2}}$.

OR

If $x=\frac{1}{2-\sqrt{3}}$, find the value of $x^{3}-2 x^{2}-7 x+5$.
16. If $x=\frac{4}{3}$ is a root of the polynomial $\mathrm{f}(\mathrm{x})=6 x^{3}-11 x^{2}+k x-20$, find the value of k .
17. In the figure $A B \| C D$. Find the value of x.

OR

In the figure $A B \| C D$ and P is any point shown in the figure . Prove that $\angle A B P+\angle$ $\mathrm{BPD}+\angle \mathrm{CDP}=360^{\circ}$

18. In the figure, it is given that $\mathrm{RT}=\mathrm{TS}$ and $\angle 1=2 \angle 2$ and $\angle 4=2 \angle 3$. Prove that $\Delta \mathrm{RBT} \cong \Delta \mathrm{SAT}$.

19. ABCD is a rhombus, EABF is a straight line such that $\mathrm{EA}=\mathrm{AB}=\mathrm{BF}$. Prove that ED and FC when produced meet at right angle.
20. Let ABC be an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the mid-points of the sides BC, CA and AB respectively, show that the segment AD and EF bisect each other at right angles.
21. If AD is a median of a triangle ABC , then prove that triangles ADB and ADC are equal in area. If G is the mid-point of median AD , prove that $\operatorname{ar}(\triangle \mathrm{BGC})=2 \operatorname{ar}($ $\Delta \mathrm{AGC})$.
22. In the figure, ABCD and AEFD are two parallelograms. Prove that
(i) $\mathrm{PE}=\mathrm{FQ}$
(ii) $\operatorname{ar}(\triangle \mathrm{APE}): \operatorname{ar}(\triangle \mathrm{PFA})=\operatorname{ar}(\triangle \mathrm{QFD}): \operatorname{ar}(\triangle \mathrm{PFD})$
(iii) $\operatorname{ar}(\triangle \mathrm{PEA})=\operatorname{ar}(\triangle \mathrm{QFD})$

OR
$A B C$ is a triangle in which D is the mid-point of $B C$ and E is the mid-point of $A D$.
Prove that area of $\triangle \mathrm{BED}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$.

SECTION D

Question numbers 23 to 30 carry 4 marks each

23. If both a and b are rational numbers, find the values of a and b

$$
\frac{5+2 \sqrt{3}}{7+4 \sqrt{3}}=a+b \sqrt{3}
$$

OR

Show that $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=5$
24. Find the values of a and b so that the polynomial $x^{3}+10 x^{2}+a x+b$ is exactly divisible by $x-1$ as well as $x-2$.
25. In the figure $P Q R S$ is a quadrilateral and T and U are respectively points on $P S$ and RS such that $\mathrm{PQ}=\mathrm{RQ}, \angle \mathrm{PQT}=\angle \mathrm{RQU}$ and $\angle \mathrm{TQS}=\angle \mathrm{UQS}$. Prove that $\mathrm{QT}=\mathrm{QU}$.

26. In the figure $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{EF} \| \mathrm{DQ}$. Determine $\angle \mathrm{PDQ}, \angle \mathrm{AED}$ and $\angle \mathrm{DEF}$.

27. In the figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{DC}=40 \mathrm{~cm}$ and $\mathrm{AB}=60 \mathrm{~cm}$. If X and Y are respectively the mid-points of AD and BC , prove that
(i) $\mathrm{XY}=50 \mathrm{~cm}$
(ii) DCYX is a trapezium
(iii) $\operatorname{ar}(\operatorname{trap} . \operatorname{DCYX})=\frac{9}{11} \operatorname{ar}($ trap. XYBA $)$

28. (i) In the figure, it is given that $\angle 1=\angle 4$ and $\angle 3=\angle$. By which Euclid's axiom, it can be shown that if $\angle 2=\angle 4$ then $\angle 1=\angle 3$.

(ii) Write Euclid's any three postulates.
29. In the figure, $\mathrm{AB}=\mathrm{AC}, \mathrm{D}$ is the point in the interior of $\triangle \mathrm{ABC}$ such that $\angle D B C=\angle D C B$. Prove that $A D$ bisects $\angle B A C$ of $\triangle A B C$.

OR
In Δ 's ABC and $\mathrm{PQR}, \mathrm{AB}=\mathrm{PQ}, \mathrm{AC}=\mathrm{PR}$ and altitude AM and altitude PN are equal. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.
30. $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$. Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$.

OR

In $\triangle \mathrm{ABC}, \mathrm{AD}$ is the median through A and E is the mid-point of AD . BE is produced to meet AC in F . Prove that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.

