I. MULTIPLE CHOICE QUESTIONS:

$(10 \times 1=10)$

1. Which graph is parallel to x-axis?
(a) $y=x+1$
(b) $y=2$
(c) $x=3$
(d) $x=2 y$
2. A solid has how many dimensions?
(a) One
(b) Two
(c) Three
(d)Four
3. On which of the following equations, the point of the form $(\mathrm{m},-\mathrm{m})$ lies?
(a) $x=-m$
(b) $x+y=0$
(c) $y=x$
4. If the supplement of an angle is 4 times of its complement, find the angle.
(a) 60°
(b) 50°
(c) 80°
(d) 100°
5. A rational number equivalent to $\frac{5}{7}$ is
(a) $\frac{15}{17}$
(b) $\frac{25}{27}$
(c) $\frac{10}{14}$
(d) $\frac{10}{27}$
6. A rational number between $\frac{1}{7}$ and $\frac{2}{7}$ is
(a) $\frac{1}{14}$
(b) $\frac{2}{21}$
(c) $\frac{5}{14}$
(d) $\frac{5}{21}$
7. For rationalising the denominator of the expression $\frac{1}{\sqrt{12}}$ we multiply and divide by
(a) $\frac{1}{\sqrt{12}}$
(b) 12 (c) $\sqrt{2}$
(d) $\sqrt{3}$
8. Identify the polynomial
(a) $\mathrm{x}^{-2}+\mathrm{x}^{-1}+5$
(b) $x^{2}+5 \sqrt{x}+7$
(c) $\frac{1}{x^{3}}+7$
(d) $3 x^{2}+7$
9. The number of zeros of $x^{2}+4 x+2$
(a) 1 (b) 2
(c) 3
(d) none of these
10. If $3+5-8=0$, then the value of $(3)^{3}+(5)^{3}-(8)^{3}$ is
(a) 260
(b) -360
(c) -160
(d) 160

II. SOLVE THE FOLLOWING:

11. Find three different irrational number between $5 / 7$ and $9 / 11$
12. Find the remainder when $x^{3}+3 X^{2}+3 X+1$ is divided by $X+\pi$.
13. Write four solutions of $2 x+3 y=8$.
14. If $x=-1$ and $y=2$ is a solution of $k x+3 y=7$, find the value k.
15. Express $2 \mathrm{x}=5$ in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and find the value of a, b and c .

SIM09MT1920

16. Write two numbers whose decimal expansions are non terminating, non recurring.
17. Write the degree of the following polynomials $5 x^{3}+4 x^{2}+7 x$
18. Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$
19. What is the abscissa of origin?
$\underset{\substack{\text { SIMPERING } \\ \text { SMENT ANO EVALUAT }}}{S}$
20. What is Euclid's fifth postulate?
III. SOLVE THE FOLLOWING:
($7 \times 2=14$)
21. Express $0 . \overline{6}$ in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$.
22. Find $p(0), p(1)$ and $p(2)$ for the following polynomial: $p(y)=y 2-y+1$
23. Express the following linear equations in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and indicate the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in each case: (i) $2 x+3 y=9.35$ (ii) $x-\frac{y}{5}-10=0$
24. In the given figure, sides QP and RQ of $\triangle \mathrm{PQR}$ are produced to points S and T respectively. If $\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$, find $\angle \mathrm{PRQ}$.
25. AD and BC are equal perpendiculars to a line segment AB . Show CD bisects AB.
26. Draw the graph of equation $3 x+6 y=12$. Find the coordinates the point where the graph cuts the y-axis.
27. If B lies between A and $C, A C=12 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. what is AB^{2} ?

IV. SOLVE THE FOLLOWING:

$$
\text { X } 3=18 \text {) }
$$

28. Show how $\sqrt{ } 5$ can be represented on the number line.
29. Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$
30. In which quadrant or on which axis do each of the points $(-2,4),(3,-1),(-1,0),(1,2)$ and $(-3,-5)$ lie? Verify your answer by locating them on the Cartesian plane.

SIM09MT1920

31. If a point C lies between two points A and B such that $A C=B C$, then prove that $A C=\frac{1}{2} A B$. Explain by drawing the figure.
32. In the given figure, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=$ $\angle P R T$.

33. Line 1 is the bisector of an angle $\angle A$ and B is any point on 1 . BP and BQ are perpendiculars from B to the arms of $\angle \mathrm{A}$ (see the given figure). Show that: (i) $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$ (ii) $\mathrm{BP}=\mathrm{BQ}$ or B is equidistant from the arms of $\angle \mathrm{A}$.

V. SOLVE THE FOLLOWING:

34. Visualize 3.765 on the number line, using successive magnification
35. Use suitable identities to find the following products:
(i) $(x+4)(x+10)$
(ii) $(\mathrm{x}+8)(\mathrm{x}-10)$
(iii) $(3 x+4)(3 x-5)$
(iv) $(3-2 \mathrm{x})(3+2 \mathrm{x})$
36. The taxi fare in a city is as follows: For the first kilometre, the fares is Rs 8 and for the subsequent distance it is Rs 5 per km . Taking the distance covered as xkm and total fare as Rs y, write a linear equation for this information, and draw its graph.
37. Determine the graph of the equation $y=2 x-3$
38. Point c is a midpoint of the line segment AB . prove that every line segment has one and only one midpoint
39. If $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF}$ and $y: z=3: 7$, find x.

SIM09MT1920

40. In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that: (i) $\mathrm{OB}=\mathrm{OC}$ (ii) AO bisects $\angle \mathrm{A}$
